
The JHU Turbulence Database Cluster

DOCUMENTATION OF DATABASE FUNCTIONS

1 Spatial differentiation inside database: equidistant grid

In this section, f denotes any one of the three components of velocity, magnetic field, or vector
potential in the x, y and z directions (ux, uy or uz; bx, by or bz; ax, ay or az), or pressure (p),
depending on which function is called. ∆x and ∆y are the width of grid in x and y direction.

1.1 Options for GetVelocityGradient, GetMagneticFieldGradient, GetVec-
torPotentialGradient, GetPressureGradient and GetDensityGradient
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Figure 1: Illustration of data points along x direction. The same approach is used in the y and
z directions.

FD4: 4th-order centered finite differencing

With the edge replication of 4 data-points on each side, this option can be spatially interpolated
using 4th-order Lagrange Polynomial interpolation.

df

dx

∣

∣

∣

∣

xn

=
2

3∆x
[f(xn+1)− f(xn−1)]−

1

12∆x
[f(xn+2)− f(xn−2)]

+o(∆x4) (1)

FD6: 6th-order centered finite differencing

df

dx

∣

∣

∣

∣

xn

=
3

4∆x
[f(xn+1)− f(xn−1)]−

3

20∆x
[f(xn+2)− f(xn−2)]

+
1

60∆x
[f(xn+3)− f(xn−3)] + o(∆x6) (2)
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FD8: 8th-order centered finite differencing

With the edge replication of 4 data-points on each side, this is the highest-order finite difference
option available.

df

dx

∣

∣

∣

∣

xn

=
4

5∆x
[f(xn+1)− f(xn−1)]−

1

5∆x
[f(xn+2)− f(xn−2)]

+
4

105∆x
[f(xn+3)− f(xn−3)]−

1

280∆x
[f(xn+4)− f(xn−4)]

+o(∆x8) (3)

M1Q4: Splines with smoothness 1 (3rd order) over 4 data points.

When computing the derivatives at grid nodes, using this option is equivalent to using 2nd order
centered finite differencing. However, the option is in fact a full-fledged interpolation; see 2.2
for details.

M2Q8: Splines with smoothness 2 (5th order) over 8 data points.

When computing the derivatives at grid nodes, using this option is equivalent to the FD6 option.
However, the option is in fact a full-fledged interpolation; see 2.2 for details.

M2Q14: Splines with smoothness 2 (5th order) over 14 data points.

When computing the derivatives at grid nodes, using this option is equivalent to using 12th
order centered finite differencing. However, the option is in fact a full-fledged interpolation; see
2.2 for details.

1.2 Options for GetVelocityLaplacian, GetMagneticFieldLaplacian, GetVec-
torPotentialLaplacian, GetVelocityHessian, GetMagneticFieldHessian, GetVec-
torPotentialHessian, GetPressureHessian and GetDensityHessian

In this section, second derivatives finite difference evaluations are shown. The expressions are
given for derivatives along single directions in terms of the x-direction, and mixed derivatives
are illustrated on the x-y plane. The same approach is used in the y and z directions, as well as
in the x-z and y-z planes for the other mixed derivatives.

FD4: 4th-order centered finite differencing (can be spatially interpolated using
4th-order Lagrange Polynomial interpolation

d2f

dx2

∣

∣

∣

∣

(xm,yn)

=
4

3∆x2
[f(xm+1, yn) + f(xm−1, yn)− 2f(xm, yn)]

−
1

12∆x2
[f(xm+2, yn) + f(xm−2, yn)− 2f(xm, yn)]

+o(∆x4) (4)
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Figure 2: Illustration of data points on x− y plane. The same approach is used in the x− z and
y − z planes.

d2f

dxdy

∣

∣

∣

∣

(xm,yn)

=
1

3∆x∆y
[f(xm+1, yn+1) + f(xm−1, yn−1)

−f(xm+1, yn−1)− f(xm−1, yn+1)]

−
1

48∆x∆y
[f(xm+2, yn+2) + f(xm−2, yn−2)

−f(xm+2, yn−2)− f(xm−2, yn+2)]

+o(∆x4) (5)
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FD6: 6th-order centered finite differencing

d2f

dx2

∣

∣

∣

∣

(xm,yn)

=
3

2∆x2
[f(xm+1, yn) + f(xm−1, yn)− 2f(xm, yn)]

−
3

20∆x2
[f(xm+2, yn) + f(xm−2, yn)− 2f(xm, yn)]

+
1

90∆x2
[f(xm+3, yn) + f(xm−3, yn)− 2f(xm, yn)]

+o(∆x6) (6)

d2f

dxdy

∣

∣

∣

∣

(xm,yn)

=
3

8∆x∆y
[f(xm+1, yn+1) + f(xm−1, yn−1)

−f(xm+1, yn−1)− f(xm−1, yn+1)]

−
3

80∆x∆y
[f(xm+2, yn+2) + f(xm−2, yn−2)

−f(xm+2, yn−2)− f(xm−2, yn+2)]

+
1

360∆x∆y
[f(xm+3, yn+3) + f(xm−3, yn−3)

−f(xm+3, yn−3)− f(xm−3, yn+3)]

+o(∆x6) (7)

FD8: 8th-order centered finite differencing

d2f

dx2

∣

∣

∣

∣

(xm,yn)

=
792

591∆x2
[f(xm+1, yn) + f(xm−1, yn)− 2f(xm, yn)]

−
207

2955∆x2
[f(xm+2, yn) + f(xm−2, yn)− 2f(xm, yn)]

−
104

8865∆x2
[f(xm+3, yn) + f(xm−3, yn)− 2f(xm, yn)]

+
9

3152∆x2
[f(xm+4, yn) + f(xm−4, yn)− 2f(xm, yn)]

+o(∆x8) (8)
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d2f

dxdy

∣

∣

∣

∣

(xm,yn)

=
14

35∆x∆y
[f(xm+1, yn+1) + f(xm−1, yn−1)

−f(xm+1, yn−1)− f(xm−1, yn+1)]

−
1

20∆x∆y
[f(xm+2, yn+2) + f(xm−2, yn−2)

−f(xm+2, yn−2)− f(xm−2, yn+2)]

+
2

315∆x∆y
[f(xm+3, yn+3) + f(xm−3, yn−3)

−f(xm+3, yn−3)− f(xm−3, yn+3)]

−
1

2240∆x∆y
[f(xm+4, yn+4) + f(xm−4, yn−4)

−f(xm+4, yn−4)− f(xm−4, yn+4)]

+o(∆x8) (9)

M2Q8: Splines with smoothness 2 (5th order) over 8 data points.

When computing the derivatives at grid nodes, using this option is equivalent to the FD6 option.
However, the option is in fact a full-fledged interpolation; see 2.2 for details.

M2Q14: Splines with smoothness 2 (5th order) over 14 data points.

When computing the derivatives at grid nodes, the results coincide with centered differences
computed with 6 neighbours. However, the option is in fact a full-fledged interpolation; see
section 2.2 for details.

2 Spatial interpolation inside database: equidistant grid
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Figure 3: Illustration of Lagrangian interpolation.

2.1 Interpolation Options for GetVelocity, GetMagneticField, GetVectorPo-
tential, GetPressure, GetDensity and GetVelocityAndPressure

In this section, f denotes any one of the three components of velocity, ux, uy or uz, magnetic
field bx, by or bz, vector potential ax, ay or az, or pressure, p, depending on which function is
called. ∆x, ∆y and ∆z are the width of grid in x, y and z direction. x′ = (x′, y′, z′).

The grid cell where the interpolation is performed is denoted by n = floor
(

x′

∆x

)

, p =

floor
(

y′

∆y

)

and q = floor
(

z′

∆z

)

, except in the cases of nearest neighbor approximation.
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NoSInt: No spatial interpolation

In this case, the value at the datapoint closest to each coordinate value is returned, rounding
up or down in each direction.

f(x′) = f(xn, yp, zq) (10)

where n = int( x′

∆x + 1
2), p = int( y′

∆y + 1
2), q = int( z′

∆z + 1
2).

Lag4: 4th-order Lagrange Polynomial interpolation

In this case, 4th-order Lagrange Polynomial interpolation is done along each spatial direction.

f(x′) =

4
∑

i=1

4
∑

j=1

4
∑

k=1

f(xn−2+i, yp−2+j, zq−2+k)

·ln−2+i
x (x′) · lp−2+j

y (y′) · lq−2+k
z (z′) (11)

liθ(θ
′) =

n+2
∏

j=n−1,j 6=i

(θ′ − θj)

n+2
∏

j=n−1,j 6=i

(θi − θj)

(12)

where θ can be x, y, or z.

Lag6: 6th-order Lagrange Polynomial interpolation

In this case, 6th-order Lagrange Polynomial interpolation is done along each spatial direction.

f(x′) =

6
∑

i=1

6
∑

j=1

6
∑

k=1

f(xn−3+i, yp−3+j, zq−3+k)

·ln−3+i
x (x′) · lp−3+j

y (y′) · lq−3+k
z (z′) (13)

liθ(θ
′) =

n+3
∏

j=n−2,j 6=i

(θ′ − θj)

n+3
∏

j=n−2,j 6=i

(θi − θj)

(14)

where θ can be x, y, or z.

Lag8: 8th-order Lagrange Polynomial interpolation

In this case, 8th-order Lagrange Polynomial interpolation is done along each spatial direction.

f(x′) =
8
∑

i=1

8
∑

j=1

8
∑

k=1

f(xn−4+i, yp−4+j, zq−4+k)

·ln−4+i
x (x′) · lp−4+j

y (y′) · lq−4+k
z (z′) (15)
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liθ(θ
′) =

n+4
∏

j=n−3,j 6=i

(θ′ − θj)

n+4
∏

j=n−3,j 6=i

(θi − θj)

(16)

where θ can be x, y, or z.

M1Q4: Splines with smoothness 1 (3rd order) over 4 data points.

f(x′) =

2
∑

i=−1

2
∑

j=−1

2
∑

k=−1

f(xn+i, yp+j, zq+k) · βi

(

x′ − xn
∆x

)

· βj

(

y′ − yp
∆y

)

· βk

(

z′ − zq
∆z

)

(17)

with the polynomials β as follows:

β
(1,4)
−1 (ξ) = ξ

(

ξ

(

−
ξ

2
+ 1

)

−
1

2

)

(18)

β
(1,4)
0 (ξ) = ξ2

(

3ξ

2
−

5

2

)

+ 1 (19)

β
(1,4)
1 (ξ) = ξ

(

ξ

(

−
3ξ

2
+ 2

)

+
1

2

)

(20)

β
(1,4)
2 (ξ) = ξ2

(

ξ

2
−

1

2

)

(21)

M2Q8: Splines with smoothness 2 (5th order) over 8 data points.

f(x′) =

4
∑

i=−3

4
∑

j=−3

4
∑

k=−3

f(xn+i, yp+j, zq+k) · βi

(

x′ − xn
∆x

)

· βj

(

y′ − yp
∆y

)

· βk

(

z′ − zq
∆z

)

(22)

with the polynomials β as follows:

β
(2,8)
−3 (ξ) = ξ

(

ξ

(

ξ

(

ξ

(

2ξ

45
−

7

60

)

+
1

12

)

+
1

180

)

−
1

60

)

(23)

β
(2,8)
−2 (ξ) = ξ

(

ξ

(

ξ

(

ξ

(

−
23ξ

72
+

61

72

)

−
217

360

)

−
3

40

)

+
3

20

)

(24)

β
(2,8)
−1 (ξ) = ξ

(

ξ

(

ξ

(

ξ

(

39ξ

40
−

51

20

)

+
63

40

)

+
3

4

)

−
3

4

)

(25)

β
(2,8)
0 (ξ) = ξ2

(

ξ

(

ξ

(

−
59ξ

36
+

25

6

)

−
13

6

)

−
49

36

)

+ 1 (26)

β
(2,8)
1 (ξ) = ξ

(

ξ

(

ξ

(

ξ

(

59ξ

36
−

145

36

)

+
17

9

)

+
3

4

)

+
3

4

)

(27)

β
(2,8)
2 (ξ) = ξ

(

ξ

(

ξ

(

ξ

(

−
39ξ

40
+

93

40

)

−
9

8

)

−
3

40

)

−
3

20

)

(28)

β
(2,8)
3 (ξ) = ξ

(

ξ

(

ξ

(

ξ

(

23ξ

72
−

3

4

)

+
49

120

)

+
1

180

)

+
1

60

)

(29)

β
(2,8)
4 (ξ) = ξ3

(

ξ

(

−
2ξ

45
+

19

180

)

−
11

180

)

(30)
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M2Q14: Splines with smoothness 2 (5th order) over 14 data points.

f(x′) =

7
∑

i=−6

7
∑

j=−6

7
∑

k=−6

f(xn+i, yp+j, zq+k) · βi

(

x′ − xn
∆x

)

· βj

(

y′ − yp
∆y

)

· βk

(

z′ − zq
∆z

)

(31)

with the polynomials β as follows:

β
(2,14)
−6 (ξ) = ξ

(

ξ

(

ξ

(

ξ

(

−
17ξ

33264
+

5

3696

)

−
1

1008

)

−
1

33264

)

+
1

5544

)

(32)

β
(2,14)
−5 (ξ) = ξ

(

ξ

(

ξ

(

ξ

(

5573ξ

831600
−

3721

207900

)

+
1577

118800

)

+
1

1925

)

−
1

385

)

(33)

β
(2,14)
−4 (ξ) = ξ

(

ξ

(

ξ

(

ξ

(

−
359ξ

8800
+

6791

61600

)

−
729

8800

)

−
1

224

)

+
1

56

)

(34)

β
(2,14)
−3 (ξ) = ξ

(

ξ

(

ξ

(

ξ

(

929ξ

6048
−

425

1008

)

+
647

2016

)

+
5

189

)

−
5

63

)

(35)

β
(2,14)
−2 (ξ) = ξ

(

ξ

(

ξ

(

ξ

(

−
175ξ

432
+

3425

3024

)

−
2605

3024

)

−
15

112

)

+
15

56

)

(36)

β
(2,14)
−1 (ξ) = ξ

(

ξ

(

ξ

(

ξ

(

87ξ

112
−

15

7

)

+
153

112

)

+
6

7

)

−
6

7

)

(37)

β
(2,14)
0 (ξ) = ξ2

(

ξ

(

ξ

(

−
27217ξ

25200
+

23617

8400

)

−
10417

8400

)

−
5369

3600

)

+ 1 (38)

β
(2,14)
1 (ξ) = ξ

(

ξ

(

ξ

(

ξ

(

27217ξ

25200
−

32617

12600

)

+
20017

25200

)

+
6

7

)

+
6

7

)

(39)

β
(2,14)
2 (ξ) = ξ

(

ξ

(

ξ

(

ξ

(

−
87ξ

112
+

195

112

)

−
9

16

)

−
15

112

)

−
15

56

)

(40)

β
(2,14)
3 (ξ) = ξ

(

ξ

(

ξ

(

ξ

(

175ξ

432
−

25

28

)

+
55

144

)

+
5

189

)

+
5

63

)

(41)

β
(2,14)
4 (ξ) = ξ

(

ξ

(

ξ

(

ξ

(

−
929ξ

6048
+

2095

6048

)

−
1031

6048

)

−
1

224

)

−
1

56

)

(42)

β
(2,14)
5 (ξ) = ξ

(

ξ

(

ξ

(

ξ

(

359ξ

8800
−

2887

30800

)

+
279

5600

)

+
1

1925

)

+
1

385

)

(43)

β
(2,14)
6 (ξ) = ξ

(

ξ

(

ξ

(

ξ

(

−
5573ξ

831600
+

4327

277200

)

−
2411

277200

)

−
1

33264

)

−
1

5544

)

(44)

β
(2,14)
7 (ξ) = ξ3

(

ξ

(

17ξ

33264
−

5

4158

)

+
23

33264

)

(45)

2.2 Interpolation Options for GetVelocityGradient, GetVelocityLaplacian,
GetVelocityHessian, GetMagneticFieldGradient, GetVectorPotentialGra-
dient, GetMagneticFieldLaplacian, GetVectorPotentialLaplacian, Get-
MagneticFieldHessian, GetVectorPotentialHessian, GetPressureGradient,
GetPressureHessian, GetDensityGradient and GetDensityHessian

In this section, f denotes gradients of velocity, magnetic field, vector potential, or pressure
gradient, Laplacian of velocity, magnetic field, vector potential, or Hessian of velocity, magnetic
field, vector potential or pressure, depending on which function is called.

8



FD4NoInt, FD6NoInt and FD8NoInt: No spatial interpolation

In this case, the value of the 4th, 6th, or 8th order finite-difference evaluation of the derivative
at the datapoint closest to each coordinate value is returned, rounding up or down in each
direction.

f(x′) = f(xn, yp, zq) (46)

where n = int( x′

∆x + 1
2), p = int( y′

∆y + 1
2), q = int( z′

∆z + 1
2).

FD4Lag4: 4th-order Lagrange Polynomial interpolation of 4th-order finite diff.

In this case, the values of the 4th order finite-difference evaluation of the derivative at the data
points are interpolated using 4th-order Lagrange Polynomials.

f(x′) =

4
∑

i=1

4
∑

j=1

4
∑

k=1

f(xn−2+i, yp−2+j, zq−2+k)

·ln−2+i
x (x′) · lp−2+j

y (y′) · lq−2+k
z (z′) (47)

liθ(θ
′) =

n+2
∏

j=n−1,j 6=i

(θ′ − θj)

n+2
∏

j=n−1,j 6=i

(θi − θj)

(48)

where θ can be x, y, or z.

M1Q4: Splines with smoothness 1 (3rd order) over 4 data points. Not applicable
for Hessian.

Differentiation is performed directly on the interpolating polynomials, giving rise to continuous
derivatives. For example:

d

dy
f(x′) =

2
∑

i=−1

2
∑

j=−1

2
∑

k=−1

f(xn+i, yp+j, zq+k) · βi

(

x′ − xn
∆x

)

·

(

d

dy
βj

(

y′ − yp
∆y

))

· βk

(

z′ − zq
∆z

)

(49)
with the β polynomials as above, and the derivatives of β given here for convenience:

d

dξ
β
(1,4)
−1 (ξ) = ξ

(

−
3ξ

2
+ 2

)

−
1

2
(50)

d

dξ
β
(1,4)
0 (ξ) = ξ

(

9ξ

2
− 5

)

(51)

d

dξ
β
(1,4)
1 (ξ) = ξ

(

−
9ξ

2
+ 4

)

+
1

2
(52)

d

dξ
β
(1,4)
2 (ξ) = ξ

(

3ξ

2
− 1

)

(53)
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M2Q8: Splines with smoothness 2 (5th order) over 8 data points.

First order derivatives are computed similarly as for the M1Q4 case, with the derivatives as
follows:

d

dξ
β
(2,8)
−3 (ξ) = ξ

(

ξ

(

ξ

(

2ξ

9
−

7

15

)

+
1

4

)

+
1

90

)

−
1

60
(54)

d

dξ
β
(2,8)
−2 (ξ) = ξ

(

ξ

(

ξ

(

−
115ξ

72
+

61

18

)

−
217

120

)

−
3

20

)

+
3

20
(55)

d

dξ
β
(2,8)
−1 (ξ) = ξ

(

ξ

(

ξ

(

39ξ

8
−

51

5

)

+
189

40

)

+
3

2

)

−
3

4
(56)

d

dξ
β
(2,8)
0 (ξ) = ξ

(

ξ

(

ξ

(

−
295ξ

36
+

50

3

)

−
13

2

)

−
49

18

)

(57)

d

dξ
β
(2,8)
1 (ξ) = ξ

(

ξ

(

ξ

(

295ξ

36
−

145

9

)

+
17

3

)

+
3

2

)

+
3

4
(58)

d

dξ
β
(2,8)
2 (ξ) = ξ

(

ξ

(

ξ

(

−
39ξ

8
+

93

10

)

−
27

8

)

−
3

20

)

−
3

20
(59)

d

dξ
β
(2,8)
3 (ξ) = ξ

(

ξ

(

ξ

(

115ξ

72
− 3

)

+
49

40

)

+
1

90

)

+
1

60
(60)

d

dξ
β
(2,8)
4 (ξ) = ξ2

(

ξ

(

−
2ξ

9
+

19

45

)

−
11

60

)

(61)

Second order derivatives can also be computed. Mixed derivatives use the first order derivatives
of the β polynomials:

d2

dydz
f(x′) =

4
∑

i=−3

4
∑

j=−3

4
∑

k=−3

f(xn+i, yp+j, zq+k)·βi

(

x′ − xn
∆x

)

·

(

d

dy
βj

(

y′ − yp
∆y

))

·

(

d

dz
βk

(

z′ − zq
∆z

))

(62)
For one component second order deriviatives, the exact same procedure as for first order deriva-
tives is followed, with the derivatives as follows:

d2

dξ2
β
(2,8)
−3 (ξ) = ξ

(

ξ

(

8ξ

9
−

7

5

)

+
1

2

)

+
1

90
(63)

d2

dξ2
β
(2,8)
−2 (ξ) = ξ

(

ξ

(

−
115ξ

18
+

61

6

)

−
217

60

)

−
3

20
(64)

d2

dξ2
β
(2,8)
−1 (ξ) = ξ

(

ξ

(

39ξ

2
−

153

5

)

+
189

20

)

+
3

2
(65)

d2

dξ2
β
(2,8)
0 (ξ) = ξ

(

ξ

(

−
295ξ

9
+ 50

)

− 13

)

−
49

18
(66)

d2

dξ2
β
(2,8)
1 (ξ) = ξ

(

ξ

(

295ξ

9
−

145

3

)

+
34

3

)

+
3

2
(67)

d2

dξ2
β
(2,8)
2 (ξ) = ξ

(

ξ

(

−
39ξ

2
+

279

10

)

−
27

4

)

−
3

20
(68)
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d2

dξ2
β
(2,8)
3 (ξ) = ξ

(

ξ

(

115ξ

18
− 9

)

+
49

20

)

+
1

90
(69)

d2

dξ2
β
(2,8)
4 (ξ) = ξ

(

ξ

(

−
8ξ

9
+

19

15

)

−
11

30

)

(70)

M2Q14: Splines with smoothness 2 (5th order) over 14 data points.

The procedure is identical as for M2Q8, using the first order derivatives given by:

d

dξ
β
(2,14)
−6 (ξ) = ξ

(

ξ

(

ξ

(

−
85ξ

33264
+

5

924

)

−
1

336

)

−
1

16632

)

+
1

5544
(71)

d

dξ
β
(2,14)
−5 (ξ) = ξ

(

ξ

(

ξ

(

5573ξ

166320
−

3721

51975

)

+
1577

39600

)

+
2

1925

)

−
1

385
(72)

d

dξ
β
(2,14)
−4 (ξ) = ξ

(

ξ

(

ξ

(

−
359ξ

1760
+

6791

15400

)

−
2187

8800

)

−
1

112

)

+
1

56
(73)

d

dξ
β
(2,14)
−3 (ξ) = ξ

(

ξ

(

ξ

(

4645ξ

6048
−

425

252

)

+
647

672

)

+
10

189

)

−
5

63
(74)

d

dξ
β
(2,14)
−2 (ξ) = ξ

(

ξ

(

ξ

(

−
875ξ

432
+

3425

756

)

−
2605

1008

)

−
15

56

)

+
15

56
(75)

d

dξ
β
(2,14)
−1 (ξ) = ξ

(

ξ

(

ξ

(

435ξ

112
−

60

7

)

+
459

112

)

+
12

7

)

−
6

7
(76)

d

dξ
β
(2,14)
0 (ξ) = ξ

(

ξ

(

ξ

(

−
27217ξ

5040
+

23617

2100

)

−
10417

2800

)

−
5369

1800

)

(77)

d

dξ
β
(2,14)
1 (ξ) = ξ

(

ξ

(

ξ

(

27217ξ

5040
−

32617

3150

)

+
20017

8400

)

+
12

7

)

+
6

7
(78)

d

dξ
β
(2,14)
2 (ξ) = ξ

(

ξ

(

ξ

(

−
435ξ

112
+

195

28

)

−
27

16

)

−
15

56

)

−
15

56
(79)

d

dξ
β
(2,14)
3 (ξ) = ξ

(

ξ

(

ξ

(

875ξ

432
−

25

7

)

+
55

48

)

+
10

189

)

+
5

63
(80)

d

dξ
β
(2,14)
4 (ξ) = ξ

(

ξ

(

ξ

(

−
4645ξ

6048
+

2095

1512

)

−
1031

2016

)

−
1

112

)

−
1

56
(81)

d

dξ
β
(2,14)
5 (ξ) = ξ

(

ξ

(

ξ

(

359ξ

1760
−

2887

7700

)

+
837

5600

)

+
2

1925

)

+
1

385
(82)

d

dξ
β
(2,14)
6 (ξ) = ξ

(

ξ

(

ξ

(

−
5573ξ

166320
+

4327

69300

)

−
2411

92400

)

−
1

16632

)

−
1

5544
(83)

d

dξ
β
(2,14)
7 (ξ) = ξ2

(

ξ

(

85ξ

33264
−

10

2079

)

+
23

11088

)

(84)

and the second order derivatives:

d2

dξ2
β
(2,14)
−6 (ξ) = ξ

(

ξ

(

−
85ξ

8316
+

5

308

)

−
1

168

)

−
1

16632
(85)
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d2

dξ2
β
(2,14)
−5 (ξ) = ξ

(

ξ

(

5573ξ

41580
−

3721

17325

)

+
1577

19800

)

+
2

1925
(86)

d2

dξ2
β
(2,14)
−4 (ξ) = ξ

(

ξ

(

−
359ξ

440
+

20373

15400

)

−
2187

4400

)

−
1

112
(87)

d2

dξ2
β
(2,14)
−3 (ξ) = ξ

(

ξ

(

4645ξ

1512
−

425

84

)

+
647

336

)

+
10

189
(88)

d2

dξ2
β
(2,14)
−2 (ξ) = ξ

(

ξ

(

−
875ξ

108
+

3425

252

)

−
2605

504

)

−
15

56
(89)

d2

dξ2
β
(2,14)
−1 (ξ) = ξ

(

ξ

(

435ξ

28
−

180

7

)

+
459

56

)

+
12

7
(90)

d2

dξ2
β
(2,14)
0 (ξ) = ξ

(

ξ

(

−
27217ξ

1260
+

23617

700

)

−
10417

1400

)

−
5369

1800
(91)

d2

dξ2
β
(2,14)
1 (ξ) = ξ

(

ξ

(

27217ξ

1260
−

32617

1050

)

+
20017

4200

)

+
12

7
(92)

d2

dξ2
β
(2,14)
2 (ξ) = ξ

(

ξ

(

−
435ξ

28
+

585

28

)

−
27

8

)

−
15

56
(93)

d2

dξ2
β
(2,14)
3 (ξ) = ξ

(

ξ

(

875ξ

108
−

75

7

)

+
55

24

)

+
10

189
(94)

d2

dξ2
β
(2,14)
4 (ξ) = ξ

(

ξ

(

−
4645ξ

1512
+

2095

504

)

−
1031

1008

)

−
1

112
(95)

d2

dξ2
β
(2,14)
5 (ξ) = ξ

(

ξ

(

359ξ

440
−

8661

7700

)

+
837

2800

)

+
2

1925
(96)

d2

dξ2
β
(2,14)
6 (ξ) = ξ

(

ξ

(

−
5573ξ

41580
+

4327

23100

)

−
2411

46200

)

−
1

16632
(97)

d2

dξ2
β
(2,14)
7 (ξ) = ξ

(

ξ

(

85ξ

8316
−

10

693

)

+
23

5544

)

(98)

3 Spatial interpolation inside the database: non-uniform grid

3.1 Lagrange interpolation

Spatial interpolation for domains with non-uninform grid spacing (e.g. the channel flow domain)
is applied using multivariate polynomial interpolation of the barycentric Lagrange form from
Ref. [1]. Using this approach, we are interested in interpolating the field f at point x

′. The
point x′ is known to exist within the grid cell at location (xm, yn, zp) where (m,n, p) are the cell
indices. The cell indices are obtained for the x and z directions, which are uniformly distributed,
according to

m = floor(x′/dx) (99)

p = floor(z′/dz) .
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In the y direction the grid is formed by Marsden-Schoenberg collocation points which are not
uniformly distributed. Along this direction we perform a search to obtain n such that

yn ≤ y′ < yn+1 if y′ ≤ 0 (100)

yn−1 < y′ ≤ yn if y′ > 0

The cell indices are also assured to obey the following:

0 ≤ m ≤ Nx − 2

0 ≤ n ≤ Ny/2− 1 if y′ ≤ 0 (101)

Ny/2 ≤ n ≤ Ny − 1 if y′ > 0

0 ≤ p ≤ Nz − 2

whereNx, Ny, and Nz are the number of grid points along the x, y, and z directions, respectively.
In the case that x′ = xNx−1 the cell index set to be m = Nx − 2; likewise for the z direction.

The interpolation stencil also contains q points in each direction for an order q interpolant
(with degree q − 1). The resulting interpolated value is expressed as:

f(x′) =

ie
∑

i=is

je
∑

j=js

ke
∑

k=ks

lix(x
′)ljy(y

′)lkz (z
′)f(xi, yj , zk) (102)

where the starting and ending indices are given as

is = m− ceil(q/2) + 1

ie = is + q − 1

js =

{

n− ceil(q/2) + 1 + jo if n ≤ Ny/2− 1

n− floor(q/2) + jo otherwise
(103)

je = js + q − 1

ks = p− ceil(q/2) + 1

ke = ks + q − 1

and jo is the index offset for the y direction depending on the distance from the top and bottom
walls. The ceil() function ensures that stencil remains symmetric about the interpolation point
when q is odd. In the case for js, the separate treatments for the top and bottom halves of
the channel is done to ensure that the one-sided stencils remain symmetric with respect to
the channel center. The value for jo may be evaluated based upon the y cell index and the
interpolation order as

jo =

{

max(ceil(q/2)− n− 1, 0) if n ≤ Ny/2− 1

min(Ny − n− ceil(q/2), 0) otherwise
. (104)

The interpolation weights, lx, ly, and lz, are given as

lξθ(θ
′) =

wξ

θ′−θξ
∑ξe

η=ξs

wη

θ′−θη

(105)
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where θ may either be x, y, or z. The barycentric weights, wξ, in (105) are given as

wξ =
1

∏ξe
η=ξs,η 6=ξ θξ − θη

(106)

The weights are computed by applying a recursive update procedure as in Ref.[1]. A slightly mod-
ified version of the algorithm in Ref. [1] is given below:

for ξ = ξs to ξe do
wξ = 1

end for
for ξ = ξs + 1 to ξe do

for η = ξs to ξ − 1 do
wη = (θη − θξ)wη

wξ = (θξ − θη)wξ

end for
end for
for ξ = ξs to ξe do

wξ = 1/wξ

end for

To account for the periodic domain along the x and z directions we adjust the i and k indices
when referencing f in (102) such that

f(x′) =

ie
∑

i=is

je
∑

j=js

ke
∑

k=ks

lix(x
′)ljy(y

′)lkz (z
′)f(xi%Nx, yj , zk%Nz) (107)

and % is the modulus operator. The indices for the interpolation coefficients remain the same,
however, we use the fact that the grid points are uniformly spaced such that (105) becomes

lξθ(θ
′) =

wξ

θ′−ξ∆θ
∑ξe

η=ξs

wη

θ′−η∆θ

(108)

and similarly for the barycentric weights, (106) becomes

wξ =
1

∏ξe
η=ξs,η 6=ξ(ξ − η)∆θ

(109)

for the x and z directions. The computation of the barycentric weights for the x and z directions
are carried out once (for a given interpolation order) for all grid points using (109); for the y
direction the barycentric weights are computed for each point using (106).

3.2 Spline interpolation

Similarly to the Lagrange case, regular spline interpolation is performed in the x and z coordi-
nates. For the y coordinate, the only difference with the uniform grid case is that polynomials
are now different for each cell. In the interest of completeness, we quote the general construction
of the β polynomials from our publication [4]:
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“Hermite splines Assuming that the values of a function f(x) and its derivatives
are known at the points 0 and 1, the polynomial s(x) can be built, such that

s(x) =

p
∑

k=0

akx
k (110)

[

dls

dxl
(x) = f (l)(x)

]

x∈{0,1}

,∀l ∈ {0, 1, . . . ,m} (111)

where p is the order of the polynomial; if the linear system of equations (111) is to
have a unique solution ak, p must be equal to 2m+ 1.

From this problem a sequence of “base” polynomials can be derived, such that
the expression of s(x) can be written as follows:

s(x) =
m
∑

l=0

∑

i=0,1

f (l)(i)α
(m,l)
i (x) (112)

where the α polynomials (of order p each one) have the following explicit expressions
(see [5] for details):

α
(m,l)
0 (x) =

xl

l!
(1− x)m+1

m−l
∑

k=0

(m+ k)!

m!k!
xk (113)

α
(m,l)
1 (x) =

(x− 1)l

l!
xm+1

m−l
∑

k=0

(m+ k)!

m!k!
(1− x)k (114)

Grid splines In [5] centered differences are used to approximate the derivatives
of f , since it would be impractical to store the derivatives of f on the grid for the
general multidimensional case. A naive algorithm is then provided to construct “grid
splines”:

s(m,q)(x) =
1+n
∑

i=−n

f(i)β
(m,q)
i (x) (115)

where the β polynomials can be constructed from the α polynomials and the centered
difference formulas. n is the number of immediate neighbours that are needed for
the computation, while q = 2n+2 is the total number of points used (i.e. the stencil
size). Unlike in previous work, the pair (m, q) is chosen for the characterization of
each formula, since the interest lies mainly in the smoothness m of the interpolant,
and the computational cost is mostly related to q. Note that the order p = 2m+ 1
also has an influence on the computational cost, but this becomes less important in
the multidimensional case.

This previous result is perfectly adequate for the case of periodic, uniform grids,
since the coordinate transforms are trivial. Furthermore, the β polynomials them-
selves owe their form to the fact that the original function is known at points in
Z. However, these results cannot be directly used for nonuniform grids, or even for
uniform grids that are not periodic.

The basis of (115) is that the β polynomials contain information about the cen-
tered differences. It is crucial that centered differences are used, since that means
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that, whether we compute the interpolation in the interval [i, i + 1] or [i + 1, i + 2],
the derivatives will be approximated with the same value at the point i+1, therefore
the derivative of the interpolant will be continuous. For the case of generic grids, it
is this constraint that must be kept: the value of the finite difference approximation
used for some grid point, embedded in the form of the polynomials used, must be
the same whether we approach the grid point from the left or from the right.

In [2, 3] a systematic way to construct all the possible finite difference formulas
for a given grid is provided. This allows the construction of specific β polynomials
for individual grid points on a nonuniform, nonperiodic grid. I.e. instead of having
a number q of β polynomials for each formula, there are now on the order of Nq,
where N is the total number of grid points. Obviously, the generation and storage
of these many polynomials is only reasonable in cases when there are many different
fields that must be evaluated on the same grid.

Assume that a grid of points xi, 0 ≤ i ≤ N−1 is given, as well as a smoothness m
and a stencil size q (thus a number of neighbours n = (q − 2)/2. This is the outline
of the algorithm that is then followed for a generic one dimensional grid to construct
the β polynomials:

1. For each 0 ≤ i ≤ N − 1, construct the Fornberg coefficients δlij for the l-th
derivative approximated at the point xi, using the grid nodes νi(j), 0 ≤ j ≤ q−1,
where

(a) if the grid is periodic:
νi(0) = i− n, νi(1) = i− n+ 1, . . . , νi(q − 2) = i+ n
Note that since the distances between successive points on the grid is con-
stant, the resulting δlij will in fact be independent of i.

(b) otherwise:

i. case i < n:

νi(0) = 0, νi(1) = 1, . . . , νi(q − 2) = q − 2

ii. case n ≤ i < N − n:

νi(0) = i− n, νi(1) = i− n+ 1, . . . , νi(q − 2) = i+ n

iii. case N − n ≤ i:

νi(0) = N − q + 1, νi(1) = N − q + 2, . . . , νi(q − 2) = N − 1

2. For each 0 ≤ i < N−1, construct the corresponding sequence of β polynomials,
and the sequence of compute nodes µ:

(a) if the grid is periodic:

β0(x̃) =

m
∑

l=0

(x1 − x0)
−lδl00α

(m,l)
0 (x̃) (116)

βj(x̃) =

m
∑

l=0

(x1 − x0)
−l
[

δl0jα
(m,l)
0 (x̃) + δl0(j−1)α

(m,l)
1 (x̃)

]

,∀1 ≤ j < q − 1

(117)

βq−1(x̃) =

m
∑

l=0

(x1 − x0)
−lδl0(q−1)α

(m,l)
1 (x̃) (118)
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µi(0) = i−n, µi(1) = i−n+1, . . . , µi(q−2) = i+n, µi(q−1) = i+1+n (119)

(b) otherwise:

i. case i < n

βij(x̃) =

m
∑

l=0

(xi+1 − xi)
−l
[

δlijα
(m,l)
0 (x̃) + δl(i+1)jα

(m,l)
1 (x̃)

]

,∀0 ≤ j < q − 1

(120)

µi(j) = νi(j) (121)

ii. case n ≤ i < N − n:

βi0(x̃) =

m
∑

l=0

(xi+1 − xi)
−lδli0α

(m,l)
0 (x̃) (122)

βij(x̃) =

m
∑

l=0

(xi+1 − xi)
−l
[

δlijα
(m,l)
0 (x̃) + δl(i+1)(j−1)α

(m,l)
1 (x̃)

]

,∀1 ≤ j < q − 1

(123)

βi(q−1)(x̃) =

m
∑

l=0

(xi+1 − xi)
−lδl(i+1)(q−1)α

(m,l)
1 (x̃) (124)

µi(0) = i−n, µi(1) = i−n+1, . . . , µi(q−2) = i+n, µi(q−1) = i+1+n
(125)

iii. case N − n ≤ i:

βij(x̃) =

m
∑

l=0

(xi+1 − xi)
−l
[

δlijα
(m,l)
0 (x̃) + δl(i+1)jα

(m,l)
1 (x̃)

]

,∀0 ≤ j < q − 1

(126)

µi(j) = νi(j) (127)

For any arbitrary point x0 ≤ x < xN−1, the 1 dimensional interpolation is performed
as follows:

1. find the c (cell) index, such that xc ≤ x < xc+1, and compute x̃ = x−xc

xc+1−xc

2. compute the sum
q−1
∑

j=0

βcj(x̃)f(µc(j)) (128)

where f is the field that is to be interpolated, known at the grid points, and
imposing that βcj is 0 if undefined.”

4 Spatial differentiation inside the database: non-uniform grid

Spatial differentiation for grids with non-uniform spacing is performed using the barycentric
method of the interpolating polynomial. In one dimension (assuming the x direction; the same
applies for the y and z directions), the interpolant for the field f is given as

f(x) =

ie
∑

j=is

ljx(x)f(xj) . (129)
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It follows that the rth derivative may be computed as

drf

dxr
(x) =

ie
∑

j=is

drljx
dxr

(x)f(xj) . (130)

Within the database we compute the derivatives at the grid sites for the FD4NoInt, FD6NoInt,
and FD8NoInt differencing methods where no interpolation is performed. If a sample point is
given that does not coincide with a grid point, the derivative at the nearest grid point is computed
and returned. For the FD4Lag4 method we compute the derivatives with the FD4NoInt
method (at the grid sites) and then these data are interpolated to the interpolation point using
the Lag4 interpolation method presented in §3.

For evaluating derivatives at the grid sites we follow the method presented in Ref. [1] such
that

drf

dxr
(xi) =

ie
∑

j=is

D
(r)
x,ijf(xj) . (131)

where D
(r)
x,ij = drljx

dxr (xi) is the differentiation matrix [1]. The differentiation matrices for r = 1
and r = 2 are given, respectively, as

D
(1)
x,ij =

wj/wi

xi − xj
(132)

D
(2)
x,ij = −2

wj/wi

xi − xj





∑

k 6=i

wk/wi

xi − xk
+

1

xi − xj



 (133)

for i 6= j and

D
(r)
x,jj = −

∑

i 6=j

D
(r)
x,ji (134)

when i = j for all r > 0. We note that in (133) and (134) fixes have been applied to the respective
equations presented in Ref. [1], i.e., (9.4) and (9.5). As with the interpolation schemes, the grid
point locations for the uniformly distributed directions are expressed as θξ = ξ∆θ, where θ may
either be x or z.

For second order mixed derivatives (such as for the pressure Hessian) we compute the deriva-
tives at the grid sites within the respective plane. When computing the mixed partials along x
and y we have

d2f

dxy
(xm, yn) =

ie
∑

i=is

je
∑

j=js

D
(1)
x,miD

(1)
y,njf(xi, yj) . (135)

Similar formulae exist for mixed partials along x and z, and y and z.
The differencing stencil size depends on the required order of the differencing method and

the derivative order, r. In general, the resulting stencil size is determined as

q =

{

q′ + r for non–symmetric grid distribution about evaluation point

q′ + r − (r + 1)%2 for symmetric grid distribution about evalutation point
(136)

where q′ is the order of the differencing method. For example, to obtain a 6th order differencing
method for the first derivative of f along the x, y, and z directions, a value of q = 7 is required.
For the second derivative, the x or z directions require a value of q = 7 where the y direction
requires q = 8 to acheive a 6th order differencing method.
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5 Temporal interpolation inside database
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Figure 4: Illustration of data points for time.

In this section, f denotes velocity, magnetic field, vector potential, pressure, their gradient,
Laplacian or Hessian, or force, depending on which function is called. ∆t is the time increment
between consecutive times stored in the database.

NoTInt: No temporal interpolation

In this case, the value at the datapoint closest to the time value is returned, rounding up or
down.

f(t′) = f(tn) (137)

where n = int( t′

∆t +
1
2).

PCHIP: Cubic Hermite Interpolation in time

The value from the two nearest time points is interpolated at time t′ using Cubic Hermite Inter-
polation Polynomial, with centered finite difference evaluation of the end-point time derivatives
- i.e. a total of four temporal points are used.

f(t′) = a+ b(t′ − tn) + c(t′ − tn)
2 + d(t′ − tn)

2(t′ − tn+1) (138)

where

a = f(tn)

b =
f(tn+1)− f(tn−1)

2∆t

c =
f(tn+1)− 2f(tn) + f(tn−1)

2∆t2

d =
−f(tn−1) + 3f(tn)− 3f(tn+1) + f(tn+2)

2∆t3
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Figure 5: Illustration of data points for filtering.

6 Spatial filtering inside database

In this section, f denotes any one of the three components of velocity, ux, uy or uz, magnetic
field, bx, by or bz, vector potential, ax, ay or az, pressure, p, or density, d, depending on the
user supplied parameter for the GetBoxFilter and GetBoxFilterGradient functions called field.
If one of the GetBoxFilterSGS functions is called, f denotes any one of the components of the
sub-grid stress for the respective field (e.g. u2x, u

2
y, u

2
z, uxuy, uxuz, uyuz). The valid values

for the field parameter are “velocity”, “magnetic”, “potential”, “pressure”, “density” for the
GetBoxFilter and GetBoxFilterGradient methods. For the GetBoxFilterSGSscalar method the
valid values for the field parameter are two scalar fields denoted by single characters, e.g. “pp”
(for pressure-pressure), “dp” (for density-pressure), “dd” (for density-density), etc.. For the
GetBoxFilterSGSvector method the valid values for the field parameter are a vector and a
scalar field denoted by single characters, e.g. “up” (for velocity-pressure), “bp” (for magnetic
field-pressure), etc.. For the GetBoxFilterSGSsymtensor method the valid values for the field
parameter are single vector fields or the same vector field denoted by repeated single characters,
e.g. “velocity”, “magnetic”, “potential” or “uu” (for velocity), “bb” (for magnetic field), “aa”
(for vector potential). For the GetBoxFilterSGStensor method the valid values for the field
parameter are two vector fields denoted by single characters, e.g. “ub” (for velocity-magnetic
field), “ab” (for vector potential-magnetic field), etc.. ∆x is the resolution of the grid (it is equal
in all directions). The user also supplies the desired filter width ∆, which is given as a floating
point number and is required to be an odd multiple of the grid resolution (to eliminate the need
for interpolating at the edges). x′ = (x′, y′, z′).

6.1 GetBoxFilter and GetBoxFilterSGS

The box filter around the target location and with the given filter width is computed as follows:

f(x′) =
1

∆3
·

n+δ
∑

i=n−δ

p+δ
∑

j=p−δ

q+δ
∑

k=q−δ

f(xi, yj , zk), (139)

where n = int( x′

∆x + 1
2 ), p = int( y′

∆y + 1
2), q = int( z′

∆z +
1
2), and δ = int(12

∆
∆x).

6.2 GetBoxFilterGradient

In this case, the computation of the gradient is done by means of second order finite differencing
of the filtered values. In addition to the field and filter width parameters described above the
user can request a particular spacing for the finite differencing computation, ∆x′. The filtered
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values computed as above are used to compute the filtered value of the gradient according to:

df

dx

∣

∣

∣

∣

xn

=
1

2∆x′
[f(xn+h)− f(xn−h)] + o(∆x′

2
), (140)

where h = int(∆x′

∆x ).

7 Evaluating the applied force inside database using GetForce

for hydrodynamic isotropic turbulence dataset (“isotropic1024”)

Information about the forcing term fi(x, y, z, t) (force per unit mass, i = x, y, z) applied during
the DNS has been stored inside the database and can be retrieved using the function GetForce.
During DNS, an effective forcing is applied in Fourier space by rescaling low-k Fourier modes

(with magnitudes 0.5 ≤ k ≤ 2.5, k =
√

k2x + k2y + k2z) to maintain their kinetic energy to

prescribed values consistent with a −5/3 spectrum. The forcing region is divided into two
shells, 0.5 ≤ k ≤ 1.5 and 1.5 < k ≤ 2.5, and the spectrum is fixed at a value of 0.3 in shell
0.5 ≤ k ≤ 1.5 shell and 0.13 in shell 1.5 < k ≤ 2.5 shell (these values are obtained empirically
so that the simulated spectrum is close to k−5/3 at low k).

In order to represent the rescaling in terms of a forcing term, we interpreting the time-
advancement in terms of a first-order time-advancement and write the discretized Navier-Stokes
equation (NSE) in Fourier space as follows

ûn+1
i (kx, ky, kz) = ûn+i (kx, ky , kz) + f̂i(kx, ky, kz)dt (141)

in which ûn+i = ûni + (· · · )dt with (· · · ) for terms on the right-hand side of NSE excluding the
forcing term, and dt is the time-step of the DNS.

In the DNS, the rescaling induces a difference between ûn+i and ûni in the wave-number range
0.5 ≤ k ≤ 2.5 that is equivalent to a force-term defined in the two shells as follows

f̂n
i (kx, ky, kz) =

1

dt

(
√

0.3
∑

0.5≤k≤1.5[(û
n+
x )2 + (ûn+y )2 + (ûn+z )2)]/2

− 1

)

ûn+i (kx, ky, kz) (142)

for shell 0.5 ≤ k ≤ 1.5 and

f̂n
i (kx, ky, kz) =

1

dt

(
√

0.13
∑

1.5≤k≤2.5[(û
n+
x )2 + (ûn+y )2 + (ûn+z )2)]/2

− 1

)

ûn+i (kx, ky, kz) (143)

for shell 1.5 < k ≤ 2.5, where ûx, ûy, ûz denote the three velocity components in Fourier space

and k =
√

k2x + k2y + k2z is the magnitude of wavenumber vector k. In this way, the energy in

these shells E(k = 1) =
∑

0.5≤k≤1.5(û
2
x+ û2y + û2z)/2 and E(k = 2) =

∑

1.5<k≤2.5(û
2
x+ û2y + û2z)/2

is maintained at 0.3 and 0.13.
There exist in total of 80 discrete wave-number modes in these two shells. There are 20

modes for kx = 0, 30 for kx > 0, and another 30 for kx < 0. In the database, the complex
Fourier coefficients f̂x, f̂y, f̂z corresponding to kx ≥ 0 (50 modes) are stored, the remaining 30
modes (kx < 0) are the conjugates of the modes kx > 0.
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Using the GetForce function, force values at any prescribed position (x, y, z) are evaluated in
the database from the Fourier forcing coefficients according to direct summation of the Fourier
series according to

fi(x, y, z, tn) =
∑

kx,ky,kz

ei(kxx+kyy+kzz) f̂n
i (kx, ky, kz) (144)

where i can be x, y, and z. Values of fi(x, y, z, t) at arbitrary times t can be obtained by
specifying PCHIP temporal interpolation.

8 Evaluating the applied force inside database using GetForce
for MHD turbulence dataset (“mhd1024”)

Using the GetForce function, force values at any prescribed position (x, y, z) are evaluated in
the Taylor-Green prescribed force field according to

fx(x, y, z, tn) = 0.25 sin(2x) cos(2y) cos(2z) (145)

fy(x, y, z, tn) = −0.25 cos(2x) sin(2y) cos(2z) (146)

fz(x, y, z, tn) = 0. (147)

9 Tracking fluid particles by GetPosition function

Getposition function tracks arrays of particles simultaneously and returns final particle locations
at the end of the trajectory integration time. The function uses second order time Runge-Kutta
integration.

Given particle locations y at a start time (tST ), the function returns all the particle locations
at a user defined end time (tET ) with user-specified particle integration time-step (∆tp). Forward
tracking is accomplished by specifying tET > tST , whereas backward tracking is accomplished
by specifying tET < tST . The time-step ∆tp’s sign need not be specified to make the distinction
between forward and backward tracking since inside the tracking integration, it is taken to be
sign[tET − tST ]|∆tp|.

Particle tracking is accomplished by integrating between times tST and tET the equation

∂x+(y, t)

∂t
= u+(y, t) (148)

where x+(y, t) and u+(y, t) denotes the position and velocity at time t of the fluid particle
originating from position y at initial time tST (superscript + represents Lagrangian quantities
following the fluid particle). The Lagrangian velocity u+(y, t) is replaced by the Eulerian velocity
from the database u(x, t) where the particle is located, namely u+(y, t) = u(x+(y, t), t).

To advance the particle positions between two successive time instants tm and tm+1(= tm +
∆tp) the predictor step yields an estimate

x∗ = x+(y, tm) + ∆tp u+(y, tm). (149)
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The corrector step then gives the particle position at tm+1 as

x+(y, tm+1) = x+(y, tm) + ∆tp [u+(y, tm) + u+(x∗, tn+1)]/2. (150)

The integration proceeds until tm reaches the user-specified final time tES . The last integration
time-step is typically done using a smaller time-step so that the integration ends exactly at the
specified tES. GetPosition then returns x+(y, tES) for all particles that were at initial locations
y.

For this integration scheme, the time-stepping error is of order (∆tp)
3 over one time step. In

general, accurate spatial and time interpolations are crucial to obtain the fluid velocities while
tracking particles along their trajectories. Spatial interpolation with various optional orders of
accuracy can be specified by the user, see §2 above. Time interpolation is done by default using
PHCIP (see §5 above).

10 Obtaining all locations above a threshold with GetThreshold

function

The GetThreshold function produces all locations in the specified dataset that have norms for
the specified field above the user supplied threshold. The norm at each of the locations is
also returned. The parameters supplied to the function are the following. The field parameter
specifies the field to be thresholded and currently the valid values are one of the simulation fields,
i.e. “velocity”, “pressure”, “magnetic”, “potential”, “density” or the derived fields ”vorticity”

and ”Q”. The spatial option specifies the interpolation or differentiation option that should
be applied. As each field is evaluated at grid nodes no interpolation is needed. Thus, for the
“velocity”, “pressure”, “magnetic”, “potential” and “density” fields the valid spatial option is
None (or 0) and for the ”vorticity” and ”Q” fields the valid differentiation options are Fd4NoInt,
Fd6NoInt, Fd8NoInt (or 40, 60, 80). The X, Y, Z and Xwidth, Ywidth and Zwidth parameters
denote the spatial region to be examined. X, Y and Z specify the bottom left corner for this
region and Xwidth, Ywidth and Zwidth specify the width in each of the three dimensions in
units of grid points. For example, the MHD dataset has a 10243 spatial grid and a region can
be specified as [0, 0, 0, 256, 256, 256] to examine the 2563 region with bottom left corner at
(0, 0, 0). The function returns the X, Y and Z coordinates and the norm of the field for all
locations with norms above the threshold. The output is ordered according to the norm of the
field examined, from highest to lowest.
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